MathNet.Numerics.Signed 3.15.0

Math.NET Numerics is the numerical foundation of the Math.NET project, aiming to provide methods and algorithms for numerical computations in science, engineering and every day use. Supports .Net 4.0.

Showing the top 20 packages that depend on MathNet.Numerics.Signed.

Packages Downloads
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
99
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
30
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
20
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
19
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
18
NPOI
.NET port of Apache POI
18
NPOI
.NET port of Apache POI
14
NPOI
.NET port of Apache POI
11
NPOI
.NET port of Apache POI
5

FFT: MKL native provider backend. FFT: 2D and multi-dimensional FFT (only supported by MKL provider, managed provider pending). FFT: real conjugate-even FFT (only leveraging symmetry in MKL provider). FFT: managed provider significantly faster on x64. Linear Algebra: pointwise trigonometric and basic functions ~Albert Pang Linear Algebra: better support for F# built-in operators (sqrt, sin, exp, ..) ~Albert Pang Linear Algebra: pointwise power operator (F#) Linear Algebra: enable experimental matrix product implementation Linear Algebra: better support for matrix to/from row-major arrays and enumerables Linear Algebra: transport allows specifying a result matrix to transpose into, inplace if square Linear Algebra: vector and matrix AsArray and similar to access internal arrays if applicable Linear Algebra: vector and matrix pointwise min/max and absmin/absmax Linear Algebra: dot-power on vectors and matrices, supporting native providers. Linear Algebra: matrix Moore-Penrose pseudo-inverse (SVD backed). Provider Control: separate Control classes for LA and FFT Providers. Provider Control: avoid internal exceptions on provider discovery. Distributions: fix misleading inline docs on Negative-Binomial. Generate: linear integer ranges Root Finding: extend zero-crossing bracketing in derivative-free algorithms. Window: periodic versions of Hamming, Hann, Cosine and Lanczos windows. Special Functions: more robust GammaLowerRegularizedInv (and Gamma.InvCDF). BUG: ODE Solver: fix bug in Runge-Kutta second order routine ~Ksero

This package has no dependencies.

Version Downloads Last updated
5.0.0 23 02/17/2024
5.0.0-beta02 17 02/20/2024
5.0.0-beta01 16 02/18/2024
5.0.0-alpha16 16 02/21/2024
5.0.0-alpha15 16 02/17/2024
5.0.0-alpha14 16 02/18/2024
5.0.0-alpha11 16 02/21/2024
5.0.0-alpha10 16 02/21/2024
5.0.0-alpha09 16 02/21/2024
5.0.0-alpha08 16 02/21/2024
5.0.0-alpha07 15 02/21/2024
5.0.0-alpha06 16 02/17/2024
5.0.0-alpha05 16 02/21/2024
5.0.0-alpha04 16 02/21/2024
5.0.0-alpha03 15 02/21/2024
5.0.0-alpha02 16 02/21/2024
5.0.0-alpha01 16 02/21/2024
4.15.0 103 01/21/2024
4.14.0 16 02/18/2024
4.13.0 16 02/18/2024
4.12.0 17 02/18/2024
4.11.0 17 02/18/2024
4.10.0 16 02/18/2024
4.9.1 19 02/20/2024
4.9.0 19 02/20/2024
4.8.1 20 02/20/2024
4.8.0 20 02/19/2024
4.8.0-beta02 17 02/18/2024
4.8.0-beta01 18 02/18/2024
4.7.0 21 02/20/2024
4.6.0 21 02/20/2024
4.5.0 21 02/20/2024
4.4.1 22 02/20/2024
3.20.2 17 02/18/2024
3.20.1 18 02/18/2024
3.20.0 18 02/18/2024
3.20.0-beta01 17 02/21/2024
3.19.0 16 02/18/2024
3.18.0 17 02/18/2024
3.17.0 17 02/18/2024
3.16.0 17 02/18/2024
3.15.0 16 02/18/2024
3.14.0-beta03 19 02/21/2024
3.14.0-beta02 19 02/21/2024
3.14.0-beta01 17 02/21/2024
3.13.1 17 02/18/2024
3.13.0 19 02/18/2024
3.12.0 19 02/18/2024
3.11.1 20 02/18/2024
3.11.0 18 02/18/2024
3.10.0 18 02/18/2024
3.9.0 22 02/20/2024
3.8.0 21 02/20/2024
3.7.1 21 02/20/2024
3.7.0 20 02/20/2024
3.6.0 21 02/19/2024
3.5.0 21 02/20/2024
3.4.0 21 02/19/2024
3.3.0 20 02/20/2024
3.3.0-beta2 18 02/20/2024
3.3.0-beta1 17 02/20/2024
3.2.3 20 02/20/2024
3.2.2 19 02/20/2024
3.2.1 19 02/20/2024
3.2.0 20 02/19/2024
3.1.0 21 02/20/2024
3.0.2 19 02/20/2024
3.0.1 22 02/20/2024
3.0.0 21 02/20/2024
3.0.0-beta05 16 02/18/2024
3.0.0-beta04 19 02/20/2024
3.0.0-beta03 17 02/20/2024
3.0.0-beta02 18 02/18/2024
3.0.0-beta01 16 02/18/2024
3.0.0-alpha9 19 02/20/2024
3.0.0-alpha8 18 02/20/2024
3.0.0-alpha7 20 02/20/2024
3.0.0-alpha6 20 02/20/2024
3.0.0-alpha5 19 02/18/2024
2.6.1 19 02/19/2024
2.6.0 22 02/20/2024
2.5.0 20 02/20/2024
2.4.0 19 02/20/2024
2.3.0 19 02/19/2024
2.2.1 21 02/20/2024